If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.905t^2-120t+125=0
a = -4.905; b = -120; c = +125;
Δ = b2-4ac
Δ = -1202-4·(-4.905)·125
Δ = 16852.5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-\sqrt{16852.5}}{2*-4.905}=\frac{120-\sqrt{16852.5}}{-9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+\sqrt{16852.5}}{2*-4.905}=\frac{120+\sqrt{16852.5}}{-9.81} $
| C(x)=35x+357,500 | | 4m+13=6m-5 | | 4.905t^2-120t+125=0 | | 5t=10- | | x²-6x+45=0 | | 3x+4=8x(x+1) | | 3x-4=8x(x-1) | | 17-x+2x/3=4/3 | | 2g+5=20-g | | -9b(3b+1)+(28b-7)=0 | | 6x-30=8x-50 | | (9+x)(3x+4)=0 | | 9(13x)−x213x=0 | | 44/x=20/180 | | 8x+4x+4+7=9x+3+2x | | 40x-5=30 | | 14-x=84 | | x-14=84 | | x3+7x2+2=0 | | 3/c=9/27 | | 3(x-9)=99/11 | | 3u-14u+8=0 | | 7a-17=5a-14 | | 8•(x+3)=14 | | M/18=15/m | | 4x+2(30-x)=86 | | x÷0.8=15 | | x^2+x^2+50x=600 | | r^2+r^2+50r=600 | | x/6x-36-8=1/x-6 | | 4(u+1)=-20 | | 4(u=1)=-20 |